AGS Polarimeter in Run 13 (first results)

AGS CNI Polarimeter 2013

3 different detector types:

Right

90 MHz sampling rate (derived from H=8)

The biggest concern is a 6.5 ns gap between "blue" and "green" measurements. Measured amplitude may be strongly smeared if the signal is not wide enough.

Fri Feb 22 18:26:18 2013

Fri Feb 22 18:29:00 2013

Run 55892 V3 I=2.41 Stat=38.9 (41.4) $P=63.3\pm2.9\%$

AGS: Run 55892 45deg.

45 degree detectors:

- •Reasonably good bananas.
- Induced noise contribution is much smaller than in Run12

45 degree strips:

Inner up detector:No induced noise contribution

<u>Outer down detector:</u> Visible induced noise contribution

AGS: Run 55892 90deg.

90 degree detectors:

- Smeared bananas.
- The similar pictures at low intensity
- Induced noise contribution is not seen

2013.03.06 CniPol Meeting 6

90 degree strip:

AGS: Run 55892 Det#6 Chan#30

Run 55892 ($I = 2.4 \times 10^{11}$) 140 MHz samplina

Strip 65 (#30):

- Banana smearing gone
- But it is clearly split
- Perhaps, this split is also seen at 90 MHz
- There are problems with WFD bunch and Carbon signal synchronization.

Runs 55821-55940 Target V3

^{•45} deg. Detectors give a few percent larger polarization than 90 deg. Detectors

[•]No visible difference in the polarization slope

Runs 55821-55940 Target V3

Should be interpreted with caution

We may expect that detector pair 3 (lower Hamamatsu) gives most reliable result

•45 deg. Detectors give a few percent larger polarization than 90 deg. Detectors

[•]No visible difference in the polarization slope

Sampling Rate Control

Run 12:

Run 13: (new RF system)

n may be selected from the pet page

An attempt to use H=12 sampling

There may be a phase shift 112 ns (spill number dependent) between H=12 harmonic and beam

Run 55820 (H=12) Ch. 84
Two phases are superimposed

Possible solution of the problem

1. RF group provides synchronization. 2.5 ns jitter (spill to spill) is expected. A first try was not fully successful.

Suggested by Igor.
 Change frequency multiplier (in our module) from 30 to 15 and usu RF harmonics 16 or 24.

Summary

- Hamamatsu detectors perform well with H=8 (90 MHz) sampling
- There are some issues with 90 degree (BNL) detectors:
 - banana smearing with H=8 sampling
 - banana split with H=12 sampling

but polarization measurement is usable.

• The are still unsolved phase synchronization problems with using H=12 (140 Mhz) sampling